При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида (1.4 ± 0.2) Н записывайте следующим образом: 1.40.2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. Мяч свободно падает с высоты H=9 м без начальной скорости. Если нулевой уровень потенциальной энергии выбран на поверхности Земли, то отношение потенциальной энергии Π мяча к его кинетической энергии K на высоте h=4 м равно:

1)
$$\frac{2}{3}$$
 2) $\frac{3}{5}$ 3) $\frac{4}{5}$ 4) $\frac{4}{7}$ 5) $\frac{5}{4}$

- **2.** С помощью подъёмного механизма груз равноускоренно поднимают вертикально вверх с поверхности Земли. Через промежуток времени $\Delta t = 5.0$ с после начала подъёма груз находился на высоте h = 15 м, продолжая движение. Если сила тяги подъёмного механизма к этому моменту времени совершила работу A = 8.4 кДж, то масса m груза равна ... кг.
- 3. Тело, брошенное вертикально вниз с некоторой высоты, за последние три секунды движения прошло путь $s=135~\mathrm{m}$. Если модуль начальной скорости тела $\upsilon_0=10,0~\frac{\mathrm{m}}{\mathrm{c}}$, то промежуток времени Δt , в течение которого тело падало, равен:

4. Тело, брошенное вертикально вниз с некоторой высоты, за последние две секунды движения прошло путь s=60 м. Если модуль начальной скорости тела $\upsilon_0=10,0$ $\frac{\rm M}{c}$, то высота h равна:

5. Тело, которое падало без начальной скорости $(v_0=0\ \frac{\mathrm{M}}{\mathrm{C}})$ с некоторой высоты, за последние три секунды движения прошло путь $s=105\ \mathrm{M}.$ Высота h, с которой тело упало, равна ... **M**.